
ELECTROMAGNETIC OSCILLATING TWO STREAM INSTABILITY OF PLASMA WA-ETCfU)
MAY G0 C S LIU, V K TRIPATI NO001477C-0590

ULASSIFIED PUB-80-178 NLE:'-EE EE
I 1111



- 36

"H'iI_ __________ I .6

MI(.ROCOPY RESOLUTI(N HSI CARI



CA Plasma Preprint PL #80O14i " E

ELECTROMAGNETIC OSCILLATING TWO STREAM INSTABILITY

OF PLASMA WAVES

by

C. S. Liu and V. K. Tripathi
Department of Physics and Astronomy

it,% University of Maryland
College Park, Maryland 20742

L Physics Publication Number 80-178
Technical Report Number 80-101

May 1980

%J#

be6M
d r 1s deusale-. its

, olr me l s _

istlibu.

UNIVERSITY OF MARYLAND
SDEPARTMENT OF PHYSICS AND ASTRONOMY

-.j COLLEGE PARK, MARYLAND

80 6 20 159
M, F. 77



//-

SLECTROMAGNETIC OSCILLATING TWO STREAM INSTABILITY

OF JLASMA WAVES*

./Liu 'C. S.,/Li -V. K. x ripathi
DepArtment -of Physics aiid--A-arr~ffftj

- . University of Maryland
/I "1

') 2 ,/ College Park, Maryl~nd 20742

0 0 7" 77-C-o59

JS; i-ABSTRACT 7 -----

Near the resonance (w 0 p) a high amplitude plasma wave

decays into a purely growing electromagnetic perturbation and

two Langmuir wave sidebands. The instability has a growth rate

y = k2  v2 for a Langmuir pump of finite wavenumber

> k v /c, and y w lvp vo2 /16c 2 for a laser light pump. Inko e

the latter case, the instability has an inhomogeneity threshold

Ivol2 W L/2 c = 1 and is a source of spontaneous generation of

magnetic field.
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I. INTRODUCTION

-Oscillating two stream instability, in which a plasma wave decays into

a zero frequency electrostatic mode and two Langmuir wave sidebands has been

known for some time and shown to be an important nonlinear process leading to

soliton formation, plasma collapse, etc. In this paper we have investigated

the electromagnetic oscillating two stream instability of electrostatic and

electromagnetic plasma waves of finite wave number by which a pump wave decays

into a purely growing electromagnetic mode and two sidebands, viz., Langmuir

waves of shorter wavelengths. For an electrostatic pump, i.e., a Langmuir

wave (L[I 0) , the low frequency perturbation has a finite longitudinal

component of electric vector (i.e., 0 • # 0) whereas for an electromagnetic

Pump (to i 10) or a dipole pump, the perturbation is purely electromagnetic

(i.e., i • = 0). In the latter case, it is similar to the Weibel insta-

bility in an anisotropIc plasma and leads to spontaneous generation of magnetic

field. Bodner and EddlemanI had some time ago pointed out this instability

of intense laser radiation by considering a dipole pump and a homogeneous

plasma. Here we have studied the electromagnetic oscillating two stream
i instability of Langmuir waves of finite wavenumber; k # 0 introduces major

qualitative and quantitative effects on the parametric instability. In the

case of an electromagnetic pump, i.e., a laser radiation, we have studied this

instability including the effect of plasma inhomogeneity and shown its im-

portance as a source of self-generated magnetic fields in laser-fusion

experiments. .

Self-generated magnetic fields of a few megagauss have been observed in
2-6

a number of experiments and computer simulations of laser produced plasmas.

The origin of these fields is believed to be due to: (1) resonance absorption,

in which the density oscillations due to the p-polarized light couple with



3

the drift velocity to produce a time average current and hence, the magnetic

9-12
field; (2) ponderomotive force, which contains a curl free term due

to collisions; (3) mutually perpendicular gradients in density and temperature

Vn x VT; (4) thermal instability1 3 and (5) Weibel instability of counter

streaming electron beams. For high power density lasers the electromagnetic

oscillating two stream instability should become an important source of

magnetic field generation.

The mechanism of the instability is as follows. A high amplitude plasma

wave (w%0, to) propagating through a plasma produces an oscillating drift

velocity of electrons in the direction of the electric field We

00I!,perturb the system by an electromagnetic perturbation (w, it); (i I. o and

the magnetic vector A is perpendicular to both k and 0 . For an electro-

magnetic pump k0Ilk, where as t0 Ik for an electrostatic pump. In the

former case the magnetic field of the perturbation couples with the oscillatory

drift velocity of electrons to produce a v x i force driving the high

frequency sidebands, viz., electrostatic plasma waves. The sidebands couple

with the pump to produce a low frequency current driving the instability.

For an electrostatic pump, the low frequency perturbation has finite density

fluctuations also, which lead to an important nonlinearity producing the side-

bands. The sidebands interact with the pump to produce a low frequency

ponderomotive force as well as a transverse current driving the instability.

In both the cases the sidebands are coupled through the relativistic velocity

dependence of mass and hence the coupling coefficient for the parametric

decay is modified.

In Section II we have studied the electromagnetic oscillating two stream

instability of Langmuir waves of finite wavenumber. In Section III, the

Instability analysis is extended to an electromagnetic pump, viz., laser

radiation, including the effect of a density gradient. A discussion of results

is given in Section IV.
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i W o d tII. INSTABILITY OF LANGMUIR WAVES1

wavex Eexp-i(wot - k x)We consider the propagation of a Langmuir wave x E° ox- t kX
0 0 0

in an uniform plasma. This produces an oscillatory velocity v = e /M io

o 2
a density oscillation no = no e k E/m i W0, and decays into a low frequency

electromagnetic perturbation i(t,w), i = c t x V/w and two high frequency

electrostatic sidebands 4.(W.,k.); j = 1,2, w1, 2 
=  WT k,2

i11z and k >> ko . The pump and sidebands produce high frequency current
0*

densities, J_(w - 2 = -n e v /2 and J (w + 2w) -n e v/2 also,
-~2x( 20 o +2x 0 2 0

which produce a magnetic field B 2  4w i k J 2 /c(k2 - 4w/c 2), importantT2y :2

for deriving the sidebands.

The response at (w,k) and (w1 2,k, 2) is obtained by solving the equations

of continuity and motion,

at + V • (nc) =0, (1)
at -

Tt(Mv) + 'V • V(Mv) -eA 'Vc x i -Vn (2)

4( 
2in mi (1 + v * )'/2c2 )

0

We expand the quantities v and n with subscripts o, 1, 2 referring to the

pump and two sidebands and the quantities without a subscript referring to

(,k) component. For wit kI component Eq. (1) gives

* 0
nI  -k v n/2w +n kv z /W 1 (3)

v1z is obtained from Eq. (2) retaining the relativistic effects through

the first term on the left-hand-side and v x nonlinearity through the
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second term on the right. The last term in Eq. (2) can be expressed in terms

of *1 by using the Poisson's equation k = -4en1. Solving these coupled

equations along with the similar equations for the upper side band w2  e2 e

obtain

S2 koVo 2wne
c2  €2 1+rv J + 2 (4)1i 8c22 +k2 c 2  o x W 0 ko

1~o 12 2,rv k V
o o o 2wne

Ei 22 k2c2 k 2 (5)

where 2  22 I12 k2 +4 2/2

£ P e+ IV0 0
2 2 82 2 22S. 8c2  k 4 w/c

j =1,2,w 2 4 ne2/m (l + 31v 12/8:2).
p 0 0 0

In writing these equations we have expressed B = y 4ri Jx /kc. In Eqs. (4)

and (5) the first terms on RHS are due to relativistic mass correction, second

terms due to v0 x B force and the last terms due to nvo nonlinearity in the

equation of continuity. The last term vanishes for a dipole pump (k = 0).

For w,k component Eqs. (1) and (2) give

eE
V m i' (6)

0

kv 2  eE
eE

vz + + (-k vv + kv v) (7)W* 0 m iW 2w o olz o o2zn 0
eEzn kov e(l -2)n 0

Z 0 0 0 1 2 0• n =(8)

mikv2  2v2  mwo(
e e

Here we have ignored the relativistic corrections as w,, is not a normal

mode. Using the Poisson's equation and Eq. (8), one obtains,
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0 2
noe k v W

n 0 00 !-(9T 2w I -2 2
0 W E

where 2 2

~ p ( p i (10)k2v2 2
e

The low frequency current density may be written as

0 oe2E k2 v
J = -n eV - n e v/2 - n e v/2 0 x+ , -

X 0 X 1 0 2 MiW 87r 1 02 (11)

Using Eq. (11) in the wave equation,

2 -

x 2 x 2 x
c c

one obtains, -2

E i 01(12)
2c2  1 + w /k c

Vo( 1 - 2)Ak2 3
pJx 8v(1~ + / 2  

(13)

Employing Eq. (13) in Eqs. (4) and (5), we obtain Lhe nonlinear dispersion

relation

C -e; " IVo4 */16c 4  (14)

2c2 2
kcw 21 1 o_ 0 _* [ 2- 2 2-2"+22 2

i+ wp/k c v WC
p e

2
£' =1---P--+ 

A
1,2 2

k2 v 2 2 k2 2
e 4c +14wo0/C +2 -4w/ i]2 2 2 22 2 2 2 2v2 2
0 4c I + Wp /k c 2(k - 4w02/C 2)  k oe -

Defining 8 - w p - Wo(l + A)I/2 , Eq. (14) takes the form
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2 2 Io IVo (W2 6 0 0] - (15)

16c

The largest growth occurs for 6 = 0 i.e., for A 0 because w wp or0 p

2v2 2 2 2 222
ke IV i k + 4w /c kc2-kI _2/ + o +o__o___

W2 4c2- W 2 /k2c2 2( 2 4w2 /C2 k 2 2 W2C
4c l+wl2(k 2  4 w2/c 2) kv 2 (6

P (16)

',2w

0

Eq. (15) can be solved in different limits. For k2 c 2/k2v 2 < 1, the last
0 e

terms in the expressions of * and A can be neglected and the growth rate

y = -iw turns out to be

2 2y M I /16c 2 , (17)

the same expression as obtained by Bodner and Eddleman in the limit of a

dipole pump. The low frequency mode is purely electromagnetic in the limit

of k - 0.I0 2 2 2 2In the opposite limit of k c /k v > 1, i.e., a pump wave of substantial
0 e

wavenumber, the last terms in * and A are predominant; these terms appear

through the density fluctuations associated with the low frequency mode, viz.,

the last terms in Eqs. (4) and (5). On further assuming w < 2w pM/mi (mi is

the mass of ions) the dispersion relation yields,

W 0 IV o
1 2  k 2o

8 v 8 2 k2  (18)

e

It must be mentioned here that the low frequency mode is a mixed mode with

By m 2 / EW(WWp)12 > Ez > EX. For w > 2 w m/mi, themagnetic fieldE 2w /ww) > >Eth
y pi z p xp

dispersion relation becomes a bicubic equation,
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k 4 c 4 2k2k2 c4 Ivo  2 3 4Vol
kc- 4+ 2 3 I k c = 0. (19)

)4 (A+ 2 2 640 S
p p e e

The roots are complex and have a finite real frequency. Eq. (19) may be

solved numerically.

____
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II. INSTABiLITY OF LASER RADIATION:

A SOURCE OF SELF-GENERATED MAGNETIC FIELDS

Here we consider the colinear propagation of laser light pump

x E exp-i(w t - k z) and all the decay waves along the z axis, i.e.,

-koijkiz. The z components of the low frequency ponderomotive force and

the current density and hence, the density oscillations vanish, i.e., the low

frequency mode is purely electromagnetic. The nonlinearity driving the low

frequency perturbation comes from J = -nle~o/2 - n eVo/2 [the same as Eq. (11)1
- 1 -2

and the sidebands are driven by the vo x B force. Sideband potentials are

given by Eqs. (4) and (5) with n = 0. The nonlinear dispersion relation,

for k >> k0 , turns out to be the same as Eq. (14) with i and A having k° = 0.

The uniform medium growth rate is then given by Eq. (17), viz., y = Wp Iv 12/16c 2

111 -1 5 22/

For a Nd:glass laser 1 2- 3 x 10 sec at 4 x 10 15(1 - w2/W2)1 / 2 W/cm 2 , i.e.,p 0

the growth time is %3p sec. It may be worthwhile mentioning here that the

growth rate of electrostatic oscillating two stream instability is given by

Y = Imw, W2 _ k2 2 -s _ 4/(2- W) = 2 i 61(w2 - 62) where 0 = k2 IV12 /4 p

At large power densities, the growth rate maximizes for 6 = ymax and ymax

k2 A2 V 2 /8v 2e ap 0

Now we consider the effect of a density gradient on this instability.

All the waves are taken to propagate along the density gradient i.e., z axis.

()kc - aa
Using Eqs. (4) and (5) and writing Jx = 4k- Bya E 

= - -z 2

one obtains

2 2 2 2 2 2 2

w 0 +w Ivol E v - (0S2 2 )E 1 + 2 2 2 -2c2B (20)
dz V v 8c v 8c v

d2 E W2 W2 ,2 W2 2 W2 VW2
2 vo I v0  w0 E- B(1

dE2 + V 2 V2 8c r2 8c2 1 E 2 ---- E1  - 7  y (1
e e e e

d22(I2- io2olo2°o o
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Eq. (11), in compliance: wiLh the Faraday 's aiid Ampere's laws, gives

d 2B W2 v 2

2 2 2 (E~ E 2 ). (22)

Eq. 20 - dz c dz

Eqs (2) -(22) are very similar to those obtained for oscillating two stream

instability suggestinig that the electromagnetic instability is absolute.1 To

calculate the threshold for the instability, take w =0 (the growth vanishes

iv',2 2 1101 2
at the threshold) and assume W (W )(1 + ZIL). Then Eqs. (20) - (22)

p o - 2 w0P 4c

take the form

22

2 2 S I()0 (23)
dz 2 LA 2 4c 2

D D

d' --- D -- B (24)
dz 2 LA 2CAD2

DD

2 2 Vod 2

d B -- P-By =-- D (25)

z2 Y 2 y 2c d
2

where A 2 =v 2 /W 2  S F= + E D = E Eqs. (23) -(25) can be solved
D e p 1 E2,9 E E2

employing the Fourier transform technique (cf. Liu15

E = 1f dk[exp-i(kz I- Lk AD /)

IvoI 2

a 2 exp(i L 4C2 -k) + a1

2

ax~i 2x '(-) (26) -, )

2 4c21



ix ii w 1i ik. t il W( 7

/ 2

- 1/15
r saddle point method with saddle pints at k +(-zL)e a i  corresponding

to inggo g a uesing waves. Since the source of these waves is situated

at z 0i, there cannot be any incoming wav at z -o. ThisA

S 2 (2n 1)- n is an integer.

1 4
The corresponding threshold power density of a Nd:glass laser is u5 x 0 Wcm2

for a density scale length of 100 Hm. Here e have taken into account the

enhancement of the pump field (which goes as an Airy function) in the vicinity

of resonance, E (b/A ) •E (vacuum).

As the amplitude of the instability grows wital time, the magnetic field B

attains large values and modifies the dispersion relation for plasma waves,

increasing the fr, :iency shift S,

Sp c 0

where w = eB/mc. The instability would be completely stahiH Jed when

V 1216c2 i~., w p wVo i2,2c. This corresponds t B ,,L Gauss

at laser intensity '101 W/cm . However, there may be other saturating

I mechanisms also for this instability.

I.
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IV. DISCUSSION

Electromagnetic oscillaLing two stream instability constitutes an

efficient channel of decay of Langmuir waves to shorter wavelengths and may

play an important role in the saturation of beam-plasma instability. The

decay waves propagate almost perpendicular to the pump wave and hence, one

should consider the effects of finite beam size on this instability. The

effect of finite ko, wave number of the pump, is to excite density fluctuations

along with purely growing electromagnetic perturbation. These fluctuations

provide strong interaction between the sidebands and the pump and thereby

2 22
enhance the growth rate y; y % w k 0v /8v ek for k > k v ec.

For a high power laser radiatiop, this instability is an important source

of spontaneous generation of magnetic fields, which have been observed in a

number of experiments. The effect of finite k is negligible and the growth

rate y = w IVo20/8c2. For a Nd:glass laser, the growth turns out to be a few

15 2
pico second at %10 W/cm . The density threshold for this instability is

,5 x 10 W/cm for a density scale length O,100 ,m. As the amplitude of the

instability (i.e., of the tragnetic field) grows, the four wave resonance

is detuned and the instability is stabilized at a level w w v 02rc. This

corresponds to the magnetic fields of a few megagauss at laser intensities

15 2
".40 W/cm

--..1. . . . ' -
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